

Carbon Capture and Storage Workshop, Escuela Técnica Superior de Ingeniería Sevilla, 4-5/05/16

Solid sorbents for CO₂ capture applications

Dr. Aimaro Sanna

Centre for Innovation in Carbon Capture and Storage School of Engineering and Physical Sciences Heriot-Watt University Edinburgh, UK

Outline

Materials for CO₂ Capture at high temperature

- CCS introduction
- The challenge
- Adsorption
- Pre-combustion IT sorbents
- Post-combustion HT sorbents

Introduction: GHG Emissions Reductions

Kyoto Protocol (1997) & Doha amendment (2012): Binding targets for 37 countries. USA, Canada, China, India, Brazil, Russia, Japan not included.

Figure 1.2 Energy-related CO₂ emissions in selected regions, 2014

Notes: The implicit CO₂ subsidy is calculated as the ratio of the economic value of those subsidies to the CO₂ emissions released from subsidised energy consumption. ETS = emissions trading scheme.

 COP21 a step ahead. 195 countries signed a pledging action agreement

HERIO

..... Will it be enough??

- Lack of immediate action.
 The agreement come into force in 2020
- Pledges are not strictly binding

Introduction: Solutions for 2050

> Transforming the energy sector is vital, but not the sole solution: the goal can only be achieved provided that CO_2 and GHG emissions in non-energy sectors are also reduced.

≻Carbon Capture and Storage: Global CO₂ target of **10-20%**

Introduction: Technical challenge

• Huge scale operations, very large flow rates !!

1000 Megawatt Coal Fired Power Station

Stack gas flow rate = $6 \times 106 \text{ m}^3/\text{hr}$

= 1 cubic km per week!

CO₂ flow rate

- = 1300 tonne/hr
 - = One tractor trailer load in 4 minutes!

1st Power plant CCS

Location: Boundary Dam Power, Canada Feedstock: Coal Size: 139 MW gross (1Mt/yr) Retrofit Capture Technology: PC amine CO_2 Fate: EOR in Weyburn field (90% of CO₂). Transportation is via 66 km pipeline. Start Date: Started in October 2014.... Fully operational end 2016 Economics: The total cost of the project was \$1.3 billion.

CO₂ capture technologies

Energy Environ. Sci., 2013, 6, 25-40

www.hw.ac.uk

Adsorption

It is a surface phenomenon (the concentration on the surface of adsorbent is different from that in the bulk; its rate is high in the beginning and then decreases till equilibrium is attained).

PHYSICAL ADSORPTION	CHEMICAL-ADSORPTIONS
The forces operating in these are weak	The forces operating in these cases are
vander Waal's forces	similar to those of a chemical bond
The heat of adsorption are low i.e.	The heat of adsorption are high i.e. about
about $20 - 40 \text{ kJ mol}^{-1}$	$40 - 400 \text{ kJ mol}^{-1}$
No compound formation takes place	Surface compounds are formed
in these cases	
It does not require any activation	It requires any activation energy.
energy.	
This type of adsorption decreases with increase of temperature	This type of adsorption first increases
	with increase of temperature. The effect
	is called activated adsorption
It forms multimolecular layer	It forms unimolecular layer

Adsorption

- At low relative pressure, a monolayer is adsorbed, which is used to calculate the BET area.
- Increasing relative pressure, additional molecules are adsorbed through multilayer formation
- If the pores are not too large (mesopores), they can be filled completely (capillary condensation)

Quantachrome Instruments Gas Sorption Show

Desorption

Quantachrome Instruments Gas Sorption Show

Quantachrome Instruments Gas Sorption Show

Adsorbed molecules are desorbed by pressure swing and/or heating

Development of CO₂ sorbents

10

- As an alternative method for CO₂ capture, adsorption can be considered to be one of the more promising methods, offering potential energy savings compared to absorbent systems, especially with respect to compression costs.
- CO₂ loading capacity
- CO₂ adsorption/desorption rate
- Resistance and high activity at high temperature and pressure
- Resistance to moisture, SO₂ etc.
- Cost
- Selectivity

Development of porous solid adsorbents for pre-combustion technologies: (Materials should be able to work at high temperature and pressure). Trial and error, initial screening by TGA

- Amine modified mesoporous silica sorbents (e.g. SBA-12/15 mes. silica): Highly selective for CO₂. Capacity ≈ ten times zeolites. Suffer thermal degradation at 400-850°C
- Zeolites: Capture capacity decreases at high temperature due to degradation of their structure. High affinity for H₂O limit use with humid stack gas. Adsorbent is unstable to acid conditions (SOx).
- Calcium and magnesium oxides, Hydrotalcite $(Mg_6Al_2CO_3(OH)_{16} \cdot 4(H_2O))$: Very good CO_2 capture capacity but sinter at high temperature. To avoid sintering Al_2O_3 can be used as stabiliser for Ca/MgO structure. Hydrotalcite structure collapses at T>550°C.
- <u>Alkali silicates (e.g. Li₄SiO₄)</u>: Very good adsorbent at pre-combustion conditions. High CO₂ capture capacity, stable at high temperature, resistant to attrition.

Pre-combustion CO₂ capture

Gasification: $CH_mO_n + O_2 + H_2O \rightarrow H_2 + CO + CO_2 + CH_4 + C_2H_4 + C_2H_6 + CH_{m'}O_{n'}$

Shift reaction: $CO+H_2O(g) \rightarrow H_2+CO_2$

Intermediate Temperature CO₂ sorbents (200-400°C)

- Layered double hydroxides (LDHs) [mainly Hydrotalcite, Mg₆Al₂CO₃(OH) ₁₆· 4(H₂O)] have been heavily investigated as sorbent for intermediate temperatures
- By intercalating long carbon-chain organic anions (e.g. stearate) into LDHs, the CO₂ capture capacity was markedly increased to 1.25 mmol /g, which is 2.5 times higher than that of traditional LDH-based sorbents (0.5 mmol/ g).

Nanohybrids in a "layer-by-layer" fashion

 CO₂ capture capacity of the Layered double hydroxides (LDHs) increased by 60% using 7 wt% GO as support.

> Distinctly Global www.hw.ac.uk

Wang et al, Energy Environ. Sci., 2014,7, 3478-3518

HERIOT

Abundant and cost–effective Ca-based sorbents have high sorption capacity (10-16 mmol CO_2/g sorbent at 700°C) but present important limitations such as:

- rapid loss of activity during the capture cycles
- sintering and attrition (fragile material)
- desorption at 850-900°C

2

1

3

4

5

90

80

70

60 50 40

30

Carbonation Conversion [%]

- SO₂ irreversibly forms CaSO₄

V. Manovic, E.J. Anthny, Int. J. Environ. Res. Public Health 2010, 7(8), 3129-3140

Wang et al, *Energy Environ. Sci.*, 2014,7, 3478-3518

High Temperature CO_2 sorbents (> 400°C): alkali-metals from fly ash

- Alkali metal based sorbents advantages are: high CO₂ capture capacity, lower regeneration temperatures (<750°C) and excellent stability.</p>
- Pure lithium silicates have shown the largest CO₂ sorption capacity and the fastest CO₂ sorption.
 CO₂
- Fly ash (FA) from the combustion of ground or powdered coal in power plants can be used as a cheap source of SiO₂

$$2Li_2CO_3 + SiO_2 \xrightarrow{950 \ ^\circ C} Li_4SiO_4 + 2CO_2$$
Fly ash

- At 600°C and 40 mol% K₂CO₃, the maximum CO₂ sorption capacity for the sorbent derived from fly ash was 2.4 mmol CO₂/g sorbent.
 - Distinctly Global www.hw.ac.uk

CO₂ sorbents waste derived

Li-Na-FA 0.5:1:1

а

Li-Na-FA 0.5:0.5:1

Li-Na-FA 1:1:1

350

300

Distinctly Global

www.hw.ac.uk

С

400

16.21%

10.64%

200

Time (min)

250

11.33%

150

• A. Sanna et al. (2015), Appl. Energy 156, 197–206.

16

- ▶ Li–Na–FA molar ratios and calcination temperature determined the sorbents CO₂ uptake
- \succ CO₂ uptake capacity was 2.54 mol CO₂/kg sorbent with 12% H₂O and 14% CO₂ at 700°C

• A. Sanna et al. (2015), *Appl. Energy* 156, 197–206.

CO₂ sorbents waste derived

- A maximum loading of 2.38 mmol CO₂/g K-FA at 700°C (similar to Li-Na and Li-FA sorbents)
- \succ K₂SiO₃ + CO₂ \rightarrow K₂CO₃ + SiO₂ K-FA 1:1 110 10.49% 700°C \succ CO₂ chemisorption follows $(14\% CO_2)$ a double layer mechanism +10%Li₂CO 100 with formation of carbonate e 8.096% layer on the surface Weight (%) 700°C (14%CO₂) d 90 Presence of additives (e.g. Li_2CO_3) favour the diffusion 700°C C 80 of cations and CO_2 in the 600°C material matrix b 500°C 70 100 200 300 400 500 600 Universal V4.5A TA Instruments Time (min)

Distinctly Global www.hw.ac.uk

• A. Sanna & M.M. Maroto-Valer (2016), *Environ. Sci.Pollut. Res* .DOI 10.1007/s11356-016-6378-x.

• A. Sanna & M.M. Maroto-Veler (2016), Ind. Eng. Chem. Res., DOI: 10.1021/acs.iecr.5b04780

Conclusions

- For intermediate temperature CO₂ sorbents, LDH derived mixed oxides are very promising but remaining issue is how to maintain their mechanical strength in the presence of steam and at high temperatures
- For high temperature CO₂ sorbents, CaO has a high CO₂ uptake capacity, but suffers severely from sintering during regeneration and degraded sorbent reactivation and effect of SO₂ must be addressed
- Alkali-silicates (e.g. Li₄SiO₄) are emerging high temperature sorbents, which have shown high CO₂ capture capacity and lower regeneration temperatures compared to CaO

Thank You!